Напишем:


✔ Реферат от 200 руб., от 4 часов
✔ Контрольную от 200 руб., от 4 часов
✔ Курсовую от 500 руб., от 1 дня
✔ Решим задачу от 20 руб., от 4 часов
✔ Дипломную работу от 3000 руб., от 3-х дней
✔ Другие виды работ по договоренности.

Узнать стоимость!

Не интересно!

История моделирования как метода познания. Моделирование как метод научного познания

Моделирование как форма отражения действительности зарождается в античную эпоху одновременно с возникновением научного познания. Однако в отчётливой форме моделирование начинает широко использоваться в эпоху Возрождения; Брунеллески, Микеланджело и другие итальянские архитекторы и скульпторы пользовались моделями проектируемых ими сооружений; в теоретических же работах Г. Галилея и Леонардо да Винчи не только используются модели, но и выясняются пределы применимости метода моделирования.

Достаточно указать на представления Демокpита и Эпикура об атомах, их форме, и способах соединения, об атомных вихрях и ливнях, объяснения физических свойств различных веществ с помощью представления о круглых и гладких или крючковатых частицах, сцепленных между собой. Эти представления являются прообразами современных моделей, отражающих ядеpно-электpонное строение атома вещества.

И. Ньютон пользуется этим методом уже вполне осознанно, а в XIX веке трудно назвать область науки или её приложений, где моделирование не имело бы существенного значения; исключительно большую методологическую роль сыграли в этом отношении работы Кельвина, Дж. Максвелла, Ф. А. Кекуле, А. М. Бутлерова и других физиков и химиков - именно эти науки стали, можно сказать, классическими «полигонами» метода моделирования.

В системе экономических наук главенствующее положение занимает экономическая теория: она служит теоретической и методологической основой всего комплекса экономических наук. Применение математических методов в экономике началось именно  в теоретико-экономических исследованиях.

Обычно в качестве исторически первой модели общественного производства называют экономическую таблицу Ф. Кене (1694 – 1774). В 1758 г. он опубликовал первый вариант своей «Экономической таблицы», второй вариант – «Арифметическая формула» - был опубликован в 1766 году. К. Маркс высоко оценил  таблицу Ф. Кенэ. «Это попытка, - писал Маркс, - сделанная во второй трети  XIII столетия, в период детства политической экономии, была в высшей степени гениальной идеей, бесспорно, самой гениальной из всех, какие только выдвинула до сего времени политическая экономия».

Представители буржуазной политической экономии уже с середины XIX века в своих теоретических исследованиях начинают использовать все более и более сложный математический аппарат. В последнее  тридцатилетие XIX века складывается самостоятельное математическое направление в буржуазной политической экономии.

Математическая школа возникла  в рамках так называемого неоклассического направления в политической экономии, главным содержанием которого является теория предельной полезности (маржинализм). В ходе  развитие неоклассического направления проблемы социально-экономической динамики незаметно исчезают из анализа, постепенно осуществляется переход к общим проблемам функционирования экономических систем, рыночных и ценовых механизмов, реализации принципа экономичности и рациональности в условиях совершенной конкуренции, условий частного и общего равновесия.

Родоначальником математической школы считается французский ученый О. Курно (1801–1877). В 1838 г. вышла его книга «Исследование математических принципов теории богатства» (О. Курно был известным математиком, философом, историком и экономистом).

Представители математической школы с помощью математических методов стремились разрешить не отдельные частные проблемы экономической теории, а охватить весь экономический процесс в целом, дать общую картину взаимозависимости всех экономических явлений. Так, по мнению Парето, процесс научного прогресса проходит через три стадии:

1. мы ограничиваемся констатированием существованиям взаимодействия между отдельными элементами экономической системы, не входя в дальнейшее их изучение;

2. мы знаем отдельные связи, существующие между отдельными элементами;

3. мы имеем возможность вычислить величину всех этих элементов и дать совершенно точное выражение условий равновесия. Идеал всякой науки – достижение третьей стадии.

Математический метод рассматривается как основной, важнейший метод, который только один в состоянии дать экономической теории научную законченность.

Появление первых электронных вычислительных машин (Джон фон Нейман, 1947) и формулирование основных принципов кибернетики (Норберт Винер, 1948) привели к поистине универсальной значимости новых методов - как в абстрактных областях знания, так и в их приложениях.

Моделирование ныне приобрело общенаучный характер и применяется в исследованиях живой и неживой природы, в науках о человеке и обществе.

Многочисленные факты, свидетельствующие о широком применении метода моделирования в исследованиях, некоторые противоречия, которые при этом возникают, потребовали глубокого теоретического осмысления данного метода познания, поисков его места в теории познания.

Этим можно объяснить большое внимание, которое уделяется философами различных стран этому вопросу в многочисленных работах.

Понятие моделирования.

 Термин модель широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений. Рассмотрим только такие модели, которые являются инструментами получения знаний.

 Модель - это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале

 Под моделирование понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез.

 Главная особенность моделирования в том, что это метод опосредованного познания с помощью объектов-заместителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом и с помощью которого изучает интересующий его объект. Именно эта особенность метода моделирования определяет специфические формы использования абстракций, аналогий, гипотез, других категорий и методов познания.

 Необходимость использования метода моделирования определяется тем, что многие объекты (или проблемы, относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно, или же это исследование требует много времени и средств.

 Процесс моделирования включает три элемента: 1) субъект (исследователь), 2) объект исследования, 3) модель, опосредствующую отношения познающего субъекта и познаваемого объекта.

Модель должна отвечать следующим требованиям:

1. Модель должна обнаруживать некоторое сходство с объектом.

2. Благодаря этому сходству, мы можем вместо объекта исследовать модель, как бы замещая объект моделью.

В общем случае можно говорить о некоторой системе условий, в рамках которой достигается отождествление объекта и модели. Будем называть эту систему условий интервалом моделируемости. Например, представление материального тела точкой возможно только в том случае, когда-либо размеры тела сравнительно малы с масштабом процесса, либо в каждой точке движение тела одинаково. Система таких условий представляет из себя интервал точечной моделируемости, т.е. интервал моделируемости для такой модели, как точка. Представление реального газа моделью идеального газа возможно лишь в случае, когда можно пренебречь взаимодействием молекул газа. Это интервал моделируемости для модели идеального газа. Модель абсолютно черного тела применяется в случае, когда можно пренебречь количеством отраженного от объекта света, сравнительно со светом поглощенным, - таков интервал моделируемости в этом случае.

 Пусть имеется или необходимо создать некоторый объект А. Мы конструируем (материально или мысленно) или находим в реальном мире другой объект В - модель объекта А. Этап построения модели предполагает наличие некоторых знаний об объекте-оригинале. Познавательные возможности модели обуславливаются тем, что модель отражает какие-либо существенные черты объекта-оригинала. Вопрос о необходимости и достаточной мере сходства оригинала и модели требует конкретного анализа. Очевидно, модель утрачивает свой смысл как в случае тождества с оригиналом (тогда она перестает быть оригиналом), так и в случае чрезмерного во всех существенных отношениях отличия от оригинала.

 Таким образом, изучение одних сторон моделируемого объекта осуществляется ценой отказа от отражения других сторон. Поэтому любая модель замещает оригинал лишь в строго ограниченном смысле. Из этого следует, что для одного объекта может быть построено несколько специализированных моделей, концентрирующих внимание на определенных сторонах исследуемого объекта или же характеризующих объект с разной степенью детализации.

 На втором этапе процесса моделирования модель выступает как самостоятельный объект исследования. Одной из форм такого исследования является проведение модельных экспериментов, при которых сознательно изменяются условия функционирования модели и систематизируются данные о ее поведении. Конечным результатом этого этапа является множество знаний о модели R.

 На третьем этапе осуществляется перенос знаний с модели на оригинал - формирование множества знаний об объекте. Этот процесс переноса знаний проводится по определенным правилам. Знания о модели должны быть скорректированы с учетом тех свойств объекта-оригинала, которые не нашли отражения или были изменены при построении модели. Мы можем с достаточным основанием переносить какой-либо результат с модели на оригинал, если этот результат необходимо связан с признаками сходства оригинала и модели. Если же определенный результат модельного исследования связан с отличием модели от оригинала, то этот результат переносить неправомерно.

 Четвертый этап - практическая проверка получаемых с помощью моделей знаний и их использование для построения обобщающей теории объекта, его преобразования или управления им.

 Для понимания сущности моделирования важно не упускать из виду, что моделирование - не единственный источник знаний об объекте. Процесс моделирования погружен в более общий процесс познания. Это обстоятельство учитывается не только на этапе построения модели, но и на завершающей стадии, когда происходит объединение и обобщение результатов исследования, получаемых на основе многообразных средств познания.

 Моделирование - циклический процесс. Это означает, что за первым четырехэтапным циклом может последовать второй, третий и т.д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные после первого цикла моделирования, обусловленные малым знанием объекта и ошибками в построении модели, можно исправить в последующих циклах. В методологии моделирования, таким образом, заложены большие возможности саморазвития.